Solution for leaks issues - plumber

Dodane: 10-07-2016 08:40
Solution for leaks issues - plumber heating repair Richmond

Boiler - about accessories

Boiler fittings and accessoriesedit
Pressuretrols to control the steam pressure in the boiler. Boilers generally have 2 or 3 pressuretrols: a manual-reset pressuretrol, which functions as a safety by setting the upper limit of steam pressure, the operating pressuretrol, which controls when the boiler fires to maintain pressure, and for boilers equipped with a modulating burner, a modulating pressuretrol which controls the amount of fire.
Safety valve: It is used to relieve pressure and prevent possible explosion of a boiler.
Water level indicators: They show the operator the level of fluid in the boiler, also known as a sight glass, water gauge or water column.
Bottom blowdown valves: They provide a means for removing solid particulates that condense and lie on the bottom of a boiler. As the name implies, this valve is usually located directly on the bottom of the boiler, and is occasionally opened to use the pressure in the boiler to push these particulates out.
Continuous blowdown valve: This allows a small quantity of water to escape continuously. Its purpose is to prevent the water in the boiler becoming saturated with dissolved salts. Saturation would lead to foaming and cause water droplets to be carried over with the steam ? a condition known as priming. Blowdown is also often used to monitor the chemistry of the boiler water.
Flash tank: High-pressure blowdown enters this vessel where the steam can 'flash' safely and be used in a low-pressure system or be vented to atmosphere while the ambient pressure blowdown flows to drain.
Automatic blowdown/continuous heat recovery system: This system allows the boiler to blowdown only when makeup water is flowing to the boiler, thereby transferring the maximum amount of heat possible from the blowdown to the makeup water. No flash tank is generally needed as the blowdown discharged is close to the temperature of the makeup water.
Hand holes: They are steel plates installed in openings in "header" to allow for inspections & installation of tubes and inspection of internal surfaces.
Steam drum internals, a series of screen, scrubber & cans (cyclone separators).
Low-water cutoff: It is a mechanical means (usually a float switch) that is used to turn off the burner or shut off fuel to the boiler to prevent it from running once the water goes below a certain point. If a boiler is "dry-fired" (burned without water in it) it can cause rupture or catastrophic failure.
Surface blowdown line: It provides a means for removing foam or other lightweight non-condensible substances that tend to float on top of the water inside the boiler.
Circulating pump: It is designed to circulate water back to the boiler after it has expelled some of its heat.
Feedwater check valve or clack valve: A non-return stop valve in the feedwater line. This may be fitted to the side of the boiler, just below the water level, or to the top of the boiler.11
Top feed: In this design for feedwater injection, the water is fed to the top of the boiler. This can reduce boiler fatigue caused by thermal stress. By spraying the feedwater over a series of trays the water is quickly heated and this can reduce limescale.
Desuperheater tubes or bundles: A series of tubes or bundles of tubes in the water drum or the steam drum designed to cool superheated steam, in order to supply auxiliary equipment that does not need, or may be damaged by, dry steam.
Chemical injection line: A connection to add chemicals for controlling feedwater pH.

Źródło: https://en.wikipedia.org/wiki/Boiler#Accessories


About boilers and safety

To define and secure boilers safely, some professional specialized organizations such as the American Society of Mechanical Engineers (ASME) develop standards and regulation codes. For instance, the ASME Boiler and Pressure Vessel Code is a standard providing a wide range of rules and directives to ensure compliance of the boilers and other pressure vessels with safety, security and design standards.

Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. When water is converted to steam it expands to over 1,000 times its original volume and travels down steam pipes at over 100 kilometres per hour. Because of this, steam is a great way of moving energy and heat around a site from a central boiler house to where it is needed, but without the right boiler feed water treatment, a steam-raising plant will suffer from scale formation and corrosion. At best, this increases energy costs and can lead to poor quality steam, reduced efficiency, shorter plant life and unreliable operation. At worst, it can lead to catastrophic failure and loss of life. Collapsed or dislodged boiler tubes can also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen who load the coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories can potentially demolish entire buildings.



Źródło: https://en.wikipedia.org/wiki/Boiler#Safety


About boilers

The pressure vessel of a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel, especially of the austenitic types, is not used in wetted parts of boilers due to corrosion and stress corrosion cracking.3 However, ferritic stainless steel is often used in superheater sections that will not be exposed to boiling water, and electrically-heated stainless steel shell boilers are allowed under the European "Pressure Equipment Directive" for production of steam for sterilizers and disinfectors.

In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers. Historically, copper was often used for fireboxes (particularly for steam locomotives), because of its better formability and higher thermal conductivity; however, in more recent times, the high price of copper often makes this an uneconomic choice and cheaper substitutes (such as steel) are used instead.

For much of the Victorian "age of steam", the only material used for boilermaking was the highest grade of wrought iron, with assembly by rivetting. This iron was often obtained from specialist ironworks, such as at Cleator Moor (UK), noted for the high quality of their rolled plate and its suitability for high-reliability use in critical applications, such as high-pressure boilers. In the 20th century, design practice instead moved towards the use of steel, which is stronger and cheaper, with welded construction, which is quicker and requires less labour. It should be noted, however, that wrought iron boilers corrode far slower than their modern-day steel counterparts, and are less susceptible to localized pitting and stress-corrosion. This makes the longevity of older wrought-iron boilers far superior to those of welded steel boilers.

Cast iron may be used for the heating vessel of domestic water heaters. Although such heaters are usually termed "boilers" in some countries, their purpose is usually to produce hot water, not steam, and so they run at low pressure and try to avoid actual boiling. The brittleness of cast iron makes it impractical for high-pressure steam boilers.


Źródło: https://en.wikipedia.org/wiki/Boiler



© 2019 http://fsl.org.pl/